Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38599190

RESUMEN

Background. Thoracoabdominal MRI is limited by respiratory motion, especially in populations who cannot perform breath-holds. One approach for reducing motion blurring in radially-acquired MRI is respiratory gating. Straightforward 'hard-gating' uses only data from a specified respiratory window and suffers from reduced SNR. Proposed 'soft-gating' reconstructions may improve scan efficiency but reduce motion correction by incorporating data with nonzero weight acquired outside the specified window. However, previous studies report conflicting benefits, and importantly the choice of soft-gated weighting algorithm and effect on image quality has not previously been explored. The purpose of this study is to map how variable soft-gated weighting functions and parameters affect signal and motion blurring in respiratory-gated reconstructions of radial lung MRI, using neonates as a model population.Methods. Ten neonatal inpatients with respiratory abnormalities were imaged using a 1.5 T neonatal-sized scanner and 3D radial ultrashort echo-time (UTE) sequence. Images were reconstructed using ungated, hard-gated, and several soft-gating weighting algorithms (exponential, sigmoid, inverse, and linear weighting decay outside the period of interest), with %Nprojrepresenting the relative amount of data included. The apparent SNR (aSNR) and motion blurring (measured by the maximum derivative of image intensity at the diaphragm, MDD) were compared between reconstructions.Results. Soft-gating functions produced higher aSNR and lower MDD than hard-gated images using equivalent %Nproj, as expected. aSNR was not identical between different gating schemes for given %Nproj. While aSNR was approximately linear with %Nprojfor each algorithm, MDD performance diverged between functions as %Nprojdecreased. Algorithm performance was relatively consistent between subjects, except in images with high noise.Conclusion. The algorithm selection for soft-gating has a notable effect on image quality of respiratory-gated MRI; the timing of included data across the respiratory phase, and not simply the amount of data, plays an important role in aSNR. The specific soft-gating function and parameters should be considered for a given imaging application's requirements of signal and sharpness.


Asunto(s)
Imagenología Tridimensional , Pulmón , Recién Nacido , Humanos , Imagenología Tridimensional/métodos , Respiración , Imagen por Resonancia Magnética/métodos , Algoritmos
2.
Sci Rep ; 14(1): 8482, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605156

RESUMEN

Decongestion reduces blood flow in the nasal turbinates, enlarging the airway lumen. Although the enlarged airspace reduces the trans-nasal inspiratory pressure drop, symptoms of nasal obstruction may relate to nasal cavity air-conditioning. Thus, it is necessary to quantify the efficiency of nasal cavity conditioning of the inhaled air. This study quantifies both overall and regional nasal air-conditioning in a cohort of 10 healthy subjects using computational fluid dynamics simulations before and after nasal decongestion. The 3D virtual geometry model was segmented from magnetic resonance images (MRI). Each subject was under two MRI acquisitions before and after the decongestion condition. The effects of decongestion on nasal cavity air conditioning efficiency were modelled at two inspiratory flowrates: 15 and 30 L min-1 to represent restful and light exercise conditions. Results show inhaled air was both heated and humidified up to 90% of alveolar conditions at the posterior septum. The air-conditioning efficiency of the nasal cavity remained nearly constant between nostril and posterior septum but dropped significantly after posterior septum. In summary, nasal cavity decongestion not only reduces inhaled air added heat by 23% and added moisture content by 19%, but also reduces the air-conditioning efficiency by 35% on average.


Asunto(s)
Cavidad Nasal , Obstrucción Nasal , Humanos , Cavidad Nasal/diagnóstico por imagen , Cavidad Nasal/fisiología , Aire Acondicionado , Estudios de Cohortes , Cornetes Nasales , Hipertrofia , Simulación por Computador
3.
J Aerosol Med Pulm Drug Deliv ; 37(1): 19-29, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064481

RESUMEN

Rationale: Neonates with respiratory issues are frequently treated with aerosolized medications to manage lung disease or facilitate airway clearance. Dynamic tracheal collapse (tracheomalacia [TM]) is a common comorbidity in these patients, but it is unknown whether the presence of TM alters the delivery of aerosolized drugs. Objectives: To quantify the effect of neonatal TM on the delivery of aerosolized drugs. Methods: Fourteen infant subjects with respiratory abnormalities were recruited; seven with TM and seven without TM. Respiratory-gated 3D ultrashort echo time magnetic resonance imaging (MRI) was acquired covering the central airway and lungs. For each subject, a computational fluid dynamics simulation modeled the airflow and particle transport in the central airway based on patient-specific airway anatomy, motion, and airflow rates derived from MRI. Results: Less aerosolized drug reached the distal airways in subjects with TM than in subjects without TM: of the total drug delivered, less particle mass passed through the main bronchi in subjects with TM compared with subjects without TM (33% vs. 47%, p = 0.013). In subjects with TM, more inhaled particles were deposited on the surface of the airway (48% vs. 25%, p = 0.003). This effect becomes greater with larger particle sizes and is significant for particles with a diameter >2 µm (2-5 µm, p ≤ 0.025 and 5-15 µm, p = 0.004). Conclusions: Neonatal patients with TM receive less aerosolized drug delivered to the lungs than subjects without TM. Currently, infants with lung disease and TM may not be receiving adequate and/or expected medication. Particles >2 µm in diameter are likely to deposit on the surface of the airway due to anatomical constrictions such as reduced tracheal and glottal cross-sectional area in neonates with TM. This problem could be alleviated by delivering smaller aerosolized particles.


Asunto(s)
Enfermedades Pulmonares , Traqueomalacia , Recién Nacido , Lactante , Humanos , Administración por Inhalación , Pulmón , Tráquea , Tamaño de la Partícula , Aerosoles y Gotitas Respiratorias
5.
J Appl Physiol (1985) ; 133(4): 893-901, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36049059

RESUMEN

Tracheomalacia is an airway condition in which the trachea excessively collapses during breathing. Neonates diagnosed with tracheomalacia require more energy to breathe, and the effect of tracheomalacia can be quantified by assessing flow-resistive work of breathing (WOB) in the trachea using computational fluid dynamics (CFD) modeling of the airway. However, CFD simulations are computationally expensive; the ability to instead predict WOB based on more straightforward measures would provide a clinically useful estimate of tracheal disease severity. The objective of this study is to quantify the WOB in the trachea using CFD and identify simple airway and/or clinical parameters that directly relate to WOB. This study included 30 neonatal intensive care unit subjects (15 with tracheomalacia and 15 without tracheomalacia). All subjects were imaged using ultrashort echo time (UTE) MRI. CFD simulations were performed using patient-specific data obtained from MRI (airway anatomy, dynamic motion, and airflow rates) to calculate the WOB in the trachea. Several airway and clinical measurements were obtained and compared with the tracheal resistive WOB. The maximum percent change in the tracheal cross-sectional area (ρ = 0.560, P = 0.001), average glottis cross-sectional area (ρ = -0.488, P = 0.006), minute ventilation (ρ = 0.613, P < 0.001), and lung tidal volume (ρ = 0.599, P < 0.001) had significant correlations with WOB. A multivariable regression model with three independent variables (minute ventilation, average glottis cross-sectional area, and minimum of the eccentricity index of the trachea) can be used to estimate WOB more accurately (R2 = 0.726). This statistical model may allow clinicians to estimate tracheal resistive WOB based on airway images and clinical data.NEW & NOTEWORTHY The work of breathing due to resistance in the trachea is an important metric for quantifying the effect of tracheal abnormalities such as tracheomalacia, but currently requires complex dynamic imaging and computational fluid dynamics simulation to calculate it. This study produces a method to predict the tracheal work of breathing based on readily available imaging and clinical metrics.


Asunto(s)
Traqueomalacia , Trabajo Respiratorio , Humanos , Recién Nacido , Pulmón/diagnóstico por imagen , Volumen de Ventilación Pulmonar , Tráquea/diagnóstico por imagen , Traqueomalacia/diagnóstico por imagen
6.
Int J Pediatr Otorhinolaryngol ; 161: 111266, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35964494

RESUMEN

Tracheobronchomegaly is a rare condition characterized by diffuse dilation of the trachea and main bronchi. In ventilator-dependent neonates with tracheobronchomegaly, a tracheostomy may be hazardous due to the lack of an appropriate tracheostomy tube size that can fit the enlarged trachea. Here, we describe a modification of the laryngotracheal separation procedure to permit ventilation in a child with tracheobronchomegaly and severe bronchopulmonary dysplasia.


Asunto(s)
Traqueobroncomegalia , Bronquios/diagnóstico por imagen , Bronquios/cirugía , Niño , Humanos , Recién Nacido , Tráquea/cirugía , Traqueostomía , Traqueotomía
8.
Phys Med Biol ; 67(14)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35714617

RESUMEN

Objective. We introduce an unsupervised motion-compensated reconstruction scheme for high-resolution free-breathing pulmonary magnetic resonance imaging.Approach. We model the image frames in the time series as the deformed version of the 3D template image volume. We assume the deformation maps to be points on a smooth manifold in high-dimensional space. Specifically, we model the deformation map at each time instant as the output of a CNN-based generator that has the same weight for all time-frames, driven by a low-dimensional latent vector. The time series of latent vectors account for the dynamics in the dataset, including respiratory motion and bulk motion. The template image volume, the parameters of the generator, and the latent vectors are learned directly from the k-t space data in an unsupervised fashion.Main results. Our experimental results show improved reconstructions compared to state-of-the-art methods, especially in the context of bulk motion during the scans.Significance. The proposed unsupervised motion-compensated scheme jointly estimates the latent vectors that capture the motion dynamics, the corresponding deformation maps, and the reconstructed motion-compensated images from the raw k-t space data of each subject. Unlike current motion-resolved strategies, the proposed scheme is more robust to bulk motion events during the scan.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Respiración
9.
Pediatr Radiol ; 52(4): 643-660, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35122130

RESUMEN

Bronchopulmonary dysplasia (BPD) is a common long-term complication of preterm birth. The chest radiograph appearance and survivability have evolved since the first description of BPD in 1967 because of improved ventilation and clinical strategies and the introduction of surfactant in the early 1990s. Contemporary imaging care is evolving with the recognition that comorbidities of tracheobronchomalacia and pulmonary hypertension have a great influence on outcomes and can be noninvasively evaluated with CT and MRI techniques, which provide a detailed evaluation of the lungs, trachea and to a lesser degree the heart. However, echocardiography remains the primary modality to evaluate and screen for pulmonary hypertension. This review is intended to highlight the important findings that chest radiograph, CT and MRI can contribute to precision diagnosis, phenotyping and prognosis resulting in optimal management and therapeutics.


Asunto(s)
Displasia Broncopulmonar , Hipertensión Pulmonar , Nacimiento Prematuro , Displasia Broncopulmonar/diagnóstico por imagen , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética/efectos adversos , Embarazo , Tomografía Computarizada por Rayos X/efectos adversos
10.
Pediatr Pulmonol ; 57(4): 1042-1050, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35029053

RESUMEN

RATIONALE: Clinical management of neonatal bronchopulmonary dysplasia (BPD) is often imprecise and can vary widely between different institutions and providers, due to limited objective measurements of disease pathology severity. There is critical need to improve guidance on the application and timing of interventional treatments, such as tracheostomy. OBJECTIVES: To generate an imaging-based clinical tool for early identification of those patients with BPD who are likely to require later tracheostomy and long-term mechanical ventilation. METHODS: We conducted a prospective cohort study of n = 61 infants (55 BPD, 6 preterm non-BPD). Magnetic resonance imaging (MRI) scores of lung parenchymal disease were used to create a binomial logistic regression model for predicting tracheostomy requirement. This model was further investigated using clinical variables and MRI-quantified tracheomalacia (TM). MEASUREMENTS AND MAIN RESULTS: A model for predicting tracheostomy requirement was created using MRI parenchymal score. This model had 89% accuracy, 100% positive predictive value (PPV), and 85% negative predictive value (NPV), compared with 84%, 60%, and 83%, respectively, when using only relevant clinical variables. In a subset of patients with airway MRI (n = 36), a model including lung and TM measurements had 83% accuracy, 92% PPV, and 78% NPV. CONCLUSIONS: MRI-based measurements of parenchymal disease and TM can be used to predict need for tracheostomy in infants with BPD, more accurately than clinical factors alone. This prediction model has strong potential as a clinical tool for physicians and families for early determination of tracheostomy requirement.


Asunto(s)
Displasia Broncopulmonar , Traqueomalacia , Displasia Broncopulmonar/diagnóstico por imagen , Displasia Broncopulmonar/terapia , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Traqueostomía
11.
PLoS One ; 16(8): e0256460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34411195

RESUMEN

Computational fluid dynamics (CFD) simulations of respiratory airflow have the potential to change the clinical assessment of regional airway function in health and disease, in pulmonary medicine and otolaryngology. For example, in diseases where multiple sites of airway obstruction occur, such as obstructive sleep apnea (OSA), CFD simulations can identify which sites of obstruction contribute most to airway resistance and may therefore be candidate sites for airway surgery. The main barrier to clinical uptake of respiratory CFD to date has been the difficulty in validating CFD results against a clinical gold standard. Invasive instrumentation of the upper airway to measure respiratory airflow velocity or pressure can disrupt the airflow and alter the subject's natural breathing patterns. Therefore, in this study, we instead propose phase contrast (PC) velocimetry magnetic resonance imaging (MRI) of inhaled hyperpolarized 129Xe gas as a non-invasive reference to which airflow velocities calculated via CFD can be compared. To that end, we performed subject-specific CFD simulations in airway models derived from 1H MRI, and using respiratory flowrate measurements acquired synchronously with MRI. Airflow velocity vectors calculated by CFD simulations were then qualitatively and quantitatively compared to velocity maps derived from PC velocimetry MRI of inhaled hyperpolarized 129Xe gas. The results show both techniques produce similar spatial distributions of high velocity regions in the anterior-posterior and foot-head directions, indicating good qualitative agreement. Statistically significant correlations and low Bland-Altman bias between the local velocity values produced by the two techniques indicates quantitative agreement. This preliminary in vivo comparison of respiratory airway CFD and PC MRI of hyperpolarized 129Xe gas demonstrates the feasibility of PC MRI as a technique to validate respiratory CFD and forms the basis for further comprehensive validation studies. This study is therefore a first step in the pathway towards clinical adoption of respiratory CFD.


Asunto(s)
Isótopos de Xenón , Humanos , Hidrodinámica , Imagen por Resonancia Magnética , Tráquea
12.
Sci Rep ; 11(1): 14410, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257360

RESUMEN

Nasal decongestant reduces blood flow to the nasal turbinates, reducing tissue volume and increasing nasal airway patency. This study maps the changes in nasal anatomy and measures how these changes affect nasal resistance, flow partitioning between superior and inferior cavity, flow patterns and wall shear stress. High-resolution MRI was applied to capture nasal anatomy in 10 healthy subjects before and after application of a topical decongestant. Computational fluid dynamics simulated nasal airflow at steady inspiratory flow rates of 15 L.min[Formula: see text] and 30 L.min[Formula: see text]. The results show decongestion mainly increases the cross-sectional area in the turbinate region and SAVR is reduced (median approximately 40[Formula: see text] reduction) in middle and lower parts of the cavity. Decongestion reduces nasal resistance by 50[Formula: see text] on average, while in the posterior cavity, nasal resistance decreases by a median factor of approximately 3 after decongestion. We also find decongestant regularises nasal airflow and alters the partitioning of flow, significantly decreasing flow through the superior portions of the nasal cavity. By comparing nasal anatomies and airflow in their normal state with that when pharmacologically decongested, this study provides data for a broad range of anatomy and airflow conditions, which may help characterize the extent of nasal variability.


Asunto(s)
Cavidad Nasal , Simulación por Computador , Humanos , Hidrodinámica , Imagen por Resonancia Magnética , Fenómenos Fisiológicos Respiratorios , Cornetes Nasales
13.
Chest ; 160(6): 2168-2177, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34157310

RESUMEN

BACKGROUND: In pediatrics, tracheomalacia is an airway condition that causes tracheal lumen collapse during breathing and may lead to the patient requiring respiratory support. Adult patients can narrow their glottis to self-generate positive end-expiratory pressure (PEEP) to raise the pressure in the trachea and prevent collapse. However, auto-PEEP has not been studied in newborns with tracheomalacia. The objective of this study was to measure the glottis cross-sectional area throughout the breathing cycle and to quantify total pressure difference through the glottis in patients with and without tracheomalacia. RESEARCH QUESTION: Do neonates with tracheomalacia narrow their glottises? How does the glottis narrowing affect the total pressure along the airway? STUDY DESIGN AND METHODS: Ultrashort echo time MRI was performed in 21 neonatal ICU patients (11 with tracheomalacia, 10 without tracheomalacia). MRI scans were reconstructed at four different phases of breathing. All patients were breathing room air or using noninvasive respiratory support at the time of MRI. Computational fluid dynamics simulations were performed on patient-specific virtual airway models with airway anatomic features and motion derived via MRI to quantify the total pressure difference through the glottis and trachea. RESULTS: The mean glottis cross-sectional area at peak expiration in the patients with tracheomalacia was less than half that in patients without tracheomalacia (4.0 ± 1.1 mm2 vs 10.3 ± 4.4 mm2; P = .002). The mean total pressure difference through the glottis at peak expiration was more than 10 times higher in patients with tracheomalacia compared with patients without tracheomalacia (2.88 ± 2.29 cm H2O vs 0.26 ± 0.16 cm H2O; P = .005). INTERPRETATION: Neonates with tracheomalacia narrow their glottises, which raises pressure in the trachea during expiration, thereby acting as auto-PEEP.


Asunto(s)
Glotis/fisiopatología , Respiración con Presión Positiva , Traqueomalacia/fisiopatología , Femenino , Glotis/diagnóstico por imagen , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Traqueomalacia/congénito , Traqueomalacia/diagnóstico por imagen
14.
Laryngoscope ; 131(6): E1971-E1979, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33399240

RESUMEN

OBJECTIVE/HYPOTHESIS: To assess the ability of ultra-short echo time (UTE)-MRI to detect subglottic stenosis (SGS) and evaluate response to balloon dilation. To correlate measurements from UTE-MRI with endotracheal-tube (ETT)-sizing and to investigate whether SGS causes change in airway dynamics. STUDY DESIGN: Animal research study. METHODS: Eight adult New-Zealand white rabbits were used as they approximate neonatal airway-size. The airways were measured using ETT-sizing and 3D UTE-MRI at baseline, 2 weeks post-cauterization induced SGS injury, and post-balloon dilation treatment. UTE-MR images were acquired to determine airway anatomy and motion. Airways were segmented from MR images. Cross-sectional area (CSA), major and minor diameters (Dmajor and Dminor ), and eccentricity were measured. RESULTS: Post-injury CSA at SGS was significantly reduced (mean 38%) compared to baseline (P = .003) using UTE-MRI. ETT-sizing correlated significantly with MRI-measured CSA at the SGS location (r = 0.6; P < .01), particularly at the post-injury timepoint (r = 0.93; P < .01). Outer diameter from ETT-sizing (OD) correlated significantly with Dmajor (r = 0.63; P < .01) from UTE-MRI at the SGS location, especially for the post-injury timepoint (r = 0.91; P < .01). Mean CSA of upper trachea did not change significantly between end-expiration and end-inspiration at any timepoint (all P > .05). Eccentricity of the upper trachea increased significantly post-balloon dilation (P < .05). CONCLUSIONS: UTE-MRI successfully detected SGS and treatment response in the rabbit model, with good correlation to ETT-sizing. Balloon dilation increased CSA at SGS, but not to baseline values. SGS did not alter dynamic motion for the trachea in this rabbit model; however, tracheas were significantly eccentric post-balloon dilation. UTE-MRI can detect SGS without sedation or ionizing radiation and may be a non-invasive alternative to ETT-sizing. LEVEL OF EVIDENCE: NA Laryngoscope, 131:E1971-E1979, 2021.


Asunto(s)
Laringoestenosis/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Imagenología Tridimensional , Intubación Intratraqueal , Laringoscopía , Conejos
15.
Laryngoscope ; 131(4): E1220-E1226, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33280109

RESUMEN

OBJECTIVES: Subglottic stenosis (SGS) is the most common type of laryngeal stenosis in neonates. SGS severity is currently graded based on percent area of obstruction (%AO) via the Myer-Cotton grading scale. However, patients with similar %AO can have widely different clinical courses. Computational fluid dynamics (CFD) based on patient-specific imaging can quantify the relationship between airway geometry and flow dynamics. We investigated the effect of %AO and axial position of SGS on work of breathing (WOB) in neonates using magnetic resonance imaging. METHODS: High-resolution ultrashort echo-time MRI of the chest and airway was obtained in three neonatal patients with no suspected airway abnormalities; images were segmented to construct three-dimensional (3D) models of the neonatal airways. These models were then modified with virtual SGSs of varying %AO and axial positioning. CFD simulations of peak inspiratory flow were used to calculate patient-specific WOB in nonstenotic and artificially stenosed airway models. RESULTS: CFD simulations demonstrated a relationship between stenosis geometry and WOB increase. WOB rapidly increased with %AO greater than about 70%. Changes in axial position could also increase WOB by approximately the same amount as a 10% increase in %AO. Increased WOB was particularly pronounced when the SGS lumen was misaligned with the glottic jet. CONCLUSION: The results indicate a strong, predictable relationship between WOB and axial position of the stenotic lumen relative to the glottis, which has not been previously reported. These findings may lead to precision diagnosis and treatment prediction tools in individual patients. LEVEL OF EVIDENCE: 4 Laryngoscope, 131:E1220-E1226, 2021.


Asunto(s)
Laringoestenosis/diagnóstico por imagen , Laringoestenosis/fisiopatología , Imagen por Resonancia Magnética , Trabajo Respiratorio , Humanos , Imagenología Tridimensional , Recién Nacido , Modelación Específica para el Paciente
16.
Comput Biol Med ; 127: 104099, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33152667

RESUMEN

RATIONALE: Computational fluid dynamics (CFD) simulations of respiratory airflow can quantify clinically useful information that cannot be obtained directly, such as the work of breathing (WOB), resistance to airflow, and pressure loss. However, patient-specific CFD simulations are often based on medical imaging that does not capture airway motion and thus may not represent true physiology, directly affecting those measurements. OBJECTIVES: To quantify the variation of respiratory airflow metrics obtained from static models of airway anatomy at several respiratory phases, temporally averaged airway anatomies, and dynamic models that incorporate physiological motion. METHODS: Neonatal airway images were acquired during free-breathing using 3D high-resolution MRI and reconstructed at several respiratory phases in two healthy subjects and two with airway disease (tracheomalacia). For each subject, five static (end expiration, peak inspiration, end inspiration, peak expiration, averaged) and one dynamic CFD simulations were performed. WOB, airway resistance, and pressure loss across the trachea were obtained for each static simulation and compared with the dynamic simulation results. RESULTS: Large differences were found in the airflow variables between the static simulations at various respiratory phases and the dynamic simulation. Depending on the static airway model used, WOB, resistance, and pressure loss varied up to 237%, 200%, and 94% compared to the dynamic simulation respectively. CONCLUSIONS: Changes in tracheal size and shape throughout the breathing cycle directly affect respiratory airflow dynamics and breathing effort. Simulations incorporating realistic airway wall dynamics most closely represent airway physiology; if limited to static simulations, the airway geometry must be obtained during the respiratory phase of interest for a given pathology.


Asunto(s)
Hidrodinámica , Respiración , Simulación por Computador , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Ventilación Pulmonar
17.
Ann Am Thorac Soc ; 17(10): 1247-1256, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32579852

RESUMEN

Rationale: Dynamic collapse of the tracheal lumen (tracheomalacia) occurs frequently in premature neonates, particularly in those with common comorbidities such as bronchopulmonary dysplasia. The tracheal collapse increases the effort necessary to breathe (work of breathing [WOB]). However, quantifying the increased WOB related to tracheomalacia has previously not been possible. Therefore, it is also not currently possible to separate the impact of tracheomalacia on patient symptoms from parenchymal abnormalities.Objectives: To measure the increase in WOB due to airway motion in individual subjects with and without tracheomalacia and with different types of respiratory support.Methods: Fourteen neonatal intensive care unit subjects not using invasive mechanical ventilation were recruited. In eight, tracheomalacia was diagnosed via clinical bronchoscopy, and six did not have tracheomalacia. Self-gated three-dimensional ultrashort-echo-time magnetic resonance imaging (MRI) was performed on each subject with clinically indicated respiratory support to obtain cine images of tracheal anatomy and motion during the respiratory cycle. The component of WOB due to resistance within the trachea was then calculated via computational fluid dynamics (CFD) simulations of airflow on the basis of the subject's anatomy, motion, and respiratory airflow rates. A second CFD simulation was performed for each subject with the airway held static at its largest (i.e., most open) position to determine the increase in WOB due to airway motion and collapse.Results: The tracheal-resistive component of WOB was increased because of airway motion by an average of 337% ± 295% in subjects with tracheomalacia and 24% ± 14% in subjects without tracheomalacia (P < 0.02). In the tracheomalacia group, subjects who were treated with continuous positive airway pressure (CPAP) using a RAM cannula expended less energy for breathing compared with the subjects who were breathing room air or on a high-flow nasal cannula.Conclusions: Neonatal subjects with tracheomalacia have increased energy expenditure compared with neonates with normal airways, and CPAP may be able to attenuate the increase in respiratory work. Subjects with tracheomalacia expend more energy on the tracheal-resistive component of WOB alone than nontracheomalacia patients expend on the resistive WOB for the entire respiratory system, according to previously reported values. CFD may be able to provide an objective measure of treatment response for children with tracheomalacia.


Asunto(s)
Traqueomalacia , Humanos , Imagen por Resonancia Magnética , Respiración , Tráquea , Trabajo Respiratorio
18.
Ann Biomed Eng ; 48(2): 822-833, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31792705

RESUMEN

The energy needed to drive airflow through the trachea normally constitutes a minor component of the work of breathing. However, with progressive tracheal compression, patient subjective symptoms can include severe breathing difficulties. Many patients suffer multiple respiratory co-morbidities and so it is important to assess compression effects when evaluating the need for surgery. This work describes the use of computational prediction to determine airflow resistance in compressed tracheal geometries reconstructed from a series of CT scans. Using energy flux analysis, the regions that contribute the most to airway resistance during inhalation are identified. The principal such region is where flow emerging from the zone of maximum constriction undergoes breakup and turbulent mixing. Secondary regions are also found below the tongue base and around the glottis, with overall airway resistance scaling nearly quadratically with flow rate. Since the anatomical extent of the imaged airway varied between scans-as commonly occurs with clinical data and when assessing reported differences between research studies-the effect of sub-glottic inflow truncation is considered. Analysis shows truncation alters the location of jet breakup and weakly influences the pattern of pressure recovery. Tests also show that placing a simple artificial glottis in the inflow to a truncated model can replicate patterns of energy loss in more extensive models, suggesting a means to assess sensitivity to domain truncation in tracheal airflow simulations.


Asunto(s)
Resistencia de las Vías Respiratorias , Simulación por Computador , Modelos Biológicos , Ventilación Pulmonar , Mecánica Respiratoria , Tomografía Computarizada por Rayos X , Tráquea , Femenino , Humanos , Masculino , Tráquea/diagnóstico por imagen , Tráquea/fisiopatología , Tráquea/cirugía
19.
Chest ; 157(3): 595-602, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31862439

RESUMEN

BACKGROUND: Bronchoscopy is the gold standard for evaluating tracheomalacia; however, reliance on an invasive procedure limits understanding of normal airway dynamics. Self-gated ultrashort echo-time MRI (UTE MRI) can assess tracheal dynamics but has not been rigorously evaluated. METHODS: This study was a validation of UTE MRI diagnosis of tracheomalacia in neonates using bronchoscopy as the gold standard. Bronchoscopies were reviewed for the severity and location of tracheomalacia based on standardized criteria. The percent change in cross-sectional area (CSA) of the trachea between end-inspiration and end-expiration was determined by UTE MRI, and receiver-operating curves were used to determine the optimal cutoff values to predict tracheomalacia and determine positive and negative predictive values. RESULTS: Airway segments with tracheomalacia based on bronchoscopy had a more than threefold change in CSA measured from UTE MRI (54.4 ± 56.1% vs 14.8 ± 19.5%; P < .0001). UTE MRI correlated moderately with bronchoscopy for tracheomalacia severity (ρ = 0.39; P = .0001). Receiver-operating curves, however, showed very good ability of UTE MRI to identify tracheomalacia (area under the curve, 0.78). A "loose" definition (> 20% change in CSA) of tracheomalacia had good sensitivity (80%) but low specificity (64%) for identifying tracheomalacia based on UTE MRI, whereas a "strict" definition (> 40% change in CSA) was poorly sensitive (48%) but highly specific (93%). CONCLUSIONS: Self-gated UTE MRI can noninvasively assess tracheomalacia in neonates without sedation, ionizing radiation, or increased risk. This technique overcomes major limitations of other diagnostic modalities and may be suitable for longitudinal population studies of tracheal dynamics.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Tráquea/diagnóstico por imagen , Traqueomalacia/diagnóstico por imagen , Displasia Broncopulmonar/epidemiología , Broncoscopía , Comorbilidad , Atresia Esofágica/epidemiología , Espiración , Femenino , Hernias Diafragmáticas Congénitas/epidemiología , Humanos , Lactante , Recién Nacido , Inhalación , Masculino , Valor Predictivo de las Pruebas , Curva ROC , Reproducibilidad de los Resultados , Fístula Traqueoesofágica/epidemiología , Traqueomalacia/diagnóstico , Traqueomalacia/epidemiología
20.
Pediatr Pulmonol ; 54(8): 1311-1318, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31134768

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity defined by requirement for respiratory support at 36 weeks postmenstrual age (PMA), but structural sequelae like lung hyperinflation are often not quantified. Quiet-breathing, nonsedated magnetic resonance imaging (MRI) allows tomographic quantification of lung volumes and densities. We hypothesized that functional residual capacity (FRC) and intrapleural volume (IV) are increased in BPD and correlate with qualitative radiological scoring of hyperinflation. METHODS: Ultrashort echo time (UTE) MRI of 17 neonates (acquired at ~39 weeks PMA) were reconstructed at end-expiration and end-inspiration via the time course of the k0 point in k-space. Images were segmented to determine total lung, tidal, parenchymal tissue, and vascular tissue volumes. FRC was calculated by subtracting parenchymal and vascular tissue volumes from IV. Respiratory rate (RR) was calculated via the UTE respiratory waveform, yielding estimates of minute ventilation when combined with tidal volumes (TVs). Two radiologists scored hyperinflation on the MR images. RESULTS: IV at FRC increased in BPD: for control, mild, and severe (patients the median volumes were 32.8, 33.5, and 50.9 mL/kg, respectively. TV (medians: 2.21, 3.64, and 4.84 mL/kg) and minute ventilation (medians: 493, 750, and 991 mL/min) increased with increasing severity of BPD (despite decreasing RR, medians: 75.6, 63.0, and 56.1 breaths/min). FRC increased with increasing severity of BPD (39.3, 38.3, and 56.0 mL, respectively). Findings were consistent with increased hyperinflation scored by radiologists. CONCLUSIONS: This study demonstrates that UTE MRI can quantify hyperinflation in neonatal BPD and that lung volumes significantly increase with disease severity.


Asunto(s)
Displasia Broncopulmonar/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Humanos , Recién Nacido , Mediciones del Volumen Pulmonar , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA